Example Curriculum
Available in
days
days
after you enroll
Available in
days
days
after you enroll
Available in
days
days
after you enroll
- Introduction (4:08)
- Apache Spark (3:43)
- How Spark Works (4:23)
- Spark Application (7:40)
- DataFrames (6:42)
- Installing Spark (5:50)
- Installing Spark on Linux
- Inside Airbnb Data (7:01)
- Writing Your First Spark Job (7:04)
- Lazy Processing (2:16)
- [Exercise] Basic Functions (1:28)
- [Exercise] Basic Functions - Solution (6:41)
- Aggregating Data (3:59)
- Joining Data (4:39)
- Aggregations and Joins with Spark (6:09)
- Complex Data Types (5:08)
- [Exercise] Aggregate Functions (0:49)
- [Exercise] Aggregate Functions - Solution (5:53)
- User Defined Functions (3:25)
- Data Shuffle (6:13)
- Data Accumulators (3:41)
- Optimizing Spark Jobs (7:38)
- Submitting Spark Jobs (4:28)
- Other Spark APIs (5:15)
- Spark SQL (4:32)
- [Exercise] Advanced Spark (2:10)
- [Exercise] Advanced Spark - Solution (5:25)
- Summary (3:07)
- Let's Have Some Fun (+ More Resources)
Available in
days
days
after you enroll
- Introduction (4:25)
- What Is a Data Lake? (9:08)
- Amazon Web Services (AWS) (7:46)
- Simple Storage Service (S3) (5:44)
- Setting Up an AWS Account (9:29)
- Data Partitioning (3:23)
- Using S3 (7:48)
- EMR Serverless (2:58)
- IAM Roles (2:51)
- Running a Spark Job (8:48)
- Parquet Data Format (7:41)
- Implementing a Data Catalog (5:31)
- Data Catalog Demo (6:41)
- Querying a Data Lake (3:59)
- Summary (3:38)
- Unlimited Updates
Available in
days
days
after you enroll
- Introduction (5:52)
- What Is Apache Airflow? (5:18)
- Airflow’s Architecture (3:14)
- Installing Airflow (6:32)
- Defining an Airflow DAG (8:02)
- Errors Handling (3:37)
- Idempotent Tasks (4:53)
- Creating a DAG - Part 1 (4:58)
- Creating a DAG - Part 2 (4:41)
- Handling Failed Tasks (4:08)
- [Exercise] Data Validation (4:30)
- [Exercise] Data Validation - Solution (3:26)
- Spark with Airflow (3:01)
- Using Spark with Airflow - Part 1 (7:38)
- Using Spark with Airflow - Part 2 (5:51)
- Sensors In Airflow (4:45)
- Using File Sensors (4:07)
- Data Ingestion (5:49)
- Reading Data From Postgres - Part 1 (6:02)
- Reading Data from Postgres - Part 2 (5:39)
- [Exercise] Average Customer Review (3:52)
- [Exercise] Average Customer Review - Solution (4:32)
- Advanced DAGs (4:25)
- Summary (2:26)
- Course Check-In
Available in
days
days
after you enroll
- Introduction (5:27)
- What Is Machine Learning (6:05)
- Regression Algorithms (5:37)
- Building a Regression Model (5:03)
- Training a Model (9:45)
- Model Evaluation (7:25)
- Testing a Regression Model (3:56)
- Model Lifecycle (2:11)
- Feature Engineering (8:43)
- Improving a Regression Model (7:33)
- Machine Learning Pipelines (3:55)
- Creating a Pipeline (2:40)
- [Exercise] House Price Estimation (1:58)
- [Exercise] House Price Estimation - Solution (3:12)
- [Exercise] Imposter Syndrome (2:55)
- Classification (7:36)
- Classifiers Evaluation (4:26)
- Training a Classifier (8:30)
- Hyperparameters (8:05)
- Optimizing a Model (3:01)
- [Exercise] Loan Approval (2:33)
- [Exercise] Load Approval - Solution (2:32)
- Deep Learning (6:55)
- Summary (3:23)
- Implement a New Life System
Available in
days
days
after you enroll
Available in
days
days
after you enroll
- Introduction (6:05)
- What Is Apache Kafka? (6:59)
- Partitioning Data (8:55)
- Kafka API (7:41)
- Kafka Architecture (3:14)
- Set Up Kafka (5:52)
- Writing to Kafka (6:06)
- Reading from Kafka (7:36)
- Data Durability (6:38)
- Kafka vs Queues (2:10)
- [Exercise] Processing Records (3:43)
- [Exercise] Processing Records - Solution (2:58)
- Delivery Semantics (5:52)
- Kafka Transactions (4:33)
- Log Compaction (3:22)
- Kafka Connect (6:58)
- Using Kafka Connect (9:44)
- Outbox Pattern (4:30)
- Schema Registry (8:00)
- Using Schema Registry (8:09)
- Tiered Storage (3:27)
- [Exercise] Track Order Status Changes (4:26)
- [Exercise] Track Order Status Changes - Solution (5:05)
- Summary (4:40)
Available in
days
days
after you enroll
- Introduction (5:40)
- What Is Apache Flink? (5:23)
- Kafka Application (8:10)
- Multiple Streams (3:10)
- Installing Apache Flink (5:45)
- Processing Individual Records (7:21)
- [Exercise] Stream Processing (4:01)
- [Exercise] Stream Processing - Solution (2:39)
- Time Windows (6:48)
- Keyed Windows (2:39)
- Using Time Windows (5:17)
- Watermarks (10:05)
- Advanced Window Operations (6:16)
- Stateful Stream Processing (7:49)
- Using Local State (4:41)
- [Exercise] Anomalies Detection (4:34)
- [Exercise] Anomalies Detection - Solution (3:33)
- Joining Streams (5:49)
- Summary (3:09)
Available in
days
days
after you enroll