Autoplay
Autocomplete
Previous Lesson
Complete and Continue
Business Analytics Bootcamp (with Python): Zero to Mastery
Section 1 - Introduction
Business Analytics Bootcamp (with Python): Zero to Mastery (2:34)
Introduction (3:50)
Exercise: Meet Your Classmates and Instructor
Get The Course Materials
The Value of a Business Analyst (4:45)
ZTM Plugin + Understanding Your Video Player
Set Your Learning Streak Goal
PART A: A/B Testing and Experimentation
What Is A/B Testing And Why It Is Important?
Section 2 - Hypothesis Testing for A/B Testing
Game Plan for Hypothesis Testing for A/B Testing (3:32)
What is Hypothesis Testing? (6:14)
CASE STUDY: FashionFiesta (Briefing) (2:02)
Python: Hypothesis Testing Exercise (10:35)
Confidence Level (5:04)
P-value (5:05)
Python: Build a P-value Function with ChatGPT (4:51)
Two Sample T-Test (7:16)
Python: Get to Know the Data with ChatGPT (8:16)
Python: Levene's Test (5:33)
Python: Two Sample T-Test (8:10)
One-Tailed Test vs. Two-Tailed Test (5:27)
Python: Get to Know the Data (4:55)
Python: 1-Tailed Test (3:43)
Chi-square Test (3:13)
Python: Get to Know the Data (5:10)
Python: Chi-square Test (4:21)
CASE STUDY: Google 41 Shades of Blue (3:10)
Section 3 - Introduction to A/B Testing
Game Plan for Introduction to A/B Testing (3:31)
CASE STUDY: Krushing Kingdoms (Briefing) (3:42)
Python: Libraries and Data (8:05)
Python: EDA with ChatGPT (12:21)
Python: Cleaning Outliers with ChatGPT (10:43)
A/B Testing Terminology and Parameters (6:04)
Setting Up Your A/B Test for Success (7:59)
Randomization Techniques for A/B Testing (12:21)
Python: Simple Randomization (3:09)
Python: Block Randomization (5:13)
Python: Stratified Randomization (13:08)
Python: Clustered Randomization (11:06)
Determining Sample Size Using Power Analysis (5:57)
Python: Sample Size Calculator for Proportions (11:04)
Determining A/B Test Sample Sizes for Continuous Outcomes (5:34)
Python: Sample Size Calculator for Continuous Variables (7:00)
Python: What if We Don't Clean the Outliers? (3:38)
Danger of a too High Sample Size (2:11)
Type I and Type II Error (3:15)
Hypothesis Testing for Proportions (4:12)
Python: Sampling Based on Optimal Sample Size (5:24)
Python: Preparing Analysis (4:33)
Python: Retention Test Post-Analysis. (8:15)
Python: What if We Don't Sample? (5:24)
Python: A/B Test Post-analysis (5:17)
What Did You Learn in This Section? (3:03)
CASE STUDY: How A/B Testing Helped Obama Raise Millions (4:39)
Section 4 - Mastering A/B Testing
Game Plan for Intermediate A/B Testing (3:57)
CASE STUDY: Amazon's Buy Button (Briefing) (2:15)
Python: Kick off (5:00)
Python: EDA with ChatGPT (13:35)
Bayesian A/B Testing (4:39)
Python: Bayesian AB Testing Setup (5:53)
Bayesian Statistics (8:18)
Python: Bayesian A/B Testing with TensorFlow (14:06)
Python: Proportions Test with ChatGPT (10:37)
Sequential Testing and Early Stopping (4:37)
Python: Sequential Testing and Early Stopping (14:30)
CASE STUDY: Netflix's Wednesday Thumbnails (Briefing) (1:20)
A/B/C Test (3:56)
Python: EDA with ChatGPT (10:24)
Python: Chi-square Test with ChatGPT (5:14)
Bonferroni Method (2:25)
Python: Bonferroni Method (11:11)
ANOVA Test and Hukey's HSD Test (6:17)
Python: ANOVA Test (4:58)
Python: Hukey's HSD Test (6:01)
Limitations and Misinterpretations in A/B Tests (5:13)
What Did You Learn in This Section? (3:25)
CASE STUDY: The Ethical Considerations of Testing - AI in Recruitment (2:52)
PART B: ECONOMETRICS & CAUSAL INFERENCE
What are Econometrics & Causal Inference and why are they important?
Section 5 - Google Causal Impact (Econometrics and Causal Inference)
Why Econometrics and Causal Inference (4:20)
Google Causal Impact - Game Plan (1:25)
Time Series Data (1:27)
CASE STUDY: Bitcoin and Paypal (2:16)
Difference-in-Differences Framework (2:58)
Causal Impact Step-by-Step Guide (1:59)
Python - Installing Packages and Libraries (3:22)
Python - Defining Dates (3:58)
Python - Loading Bitcoin Data (4:22)
Assumptions Needed (3:33)
Python - Loading More Data (3:49)
Python - Data Preparation (4:38)
Python - Preparing for Correlation Matrix (1:58)
Correlation Recap and Stationarity (3:56)
Python - Stationarity Test (7:24)
Python - Correlation Matrix and Heatmap (8:21)
Python - Google Causal Impact Setup (2:12)
Python - Google Causal Impact (2:53)
Interpretation of Results (4:10)
Python - Causal Impact Results (4:49)
CHALLENGE: Introduction (5:48)
CHALLENGE: Solutions (19:32)
EXERCISE: Imposter Syndrome (2:55)
Section 6 - Matching
Matching - Game Plan (2:45)
What is Matching? (3:18)
CASE STUDY: Catholic Schools & Standardized Tests (Briefing) (1:40)
Python - Directory and Libraries (3:16)
Python - Loading Data (2:28)
Unconfoundedness (2:50)
Python - Comparing Means (3:04)
Python - T-Test (4:16)
Python - T-Test Loop (6:04)
Python - Chi-square Test (3:18)
Python - Chi-square Loop (3:53)
The Curse of Dimensionality (1:52)
Python - Transforming Race Variable (8:22)
Python - Transforming Education Variable (5:02)
Python - Cleaning and Preparing Dataset (2:56)
Common Support Region (4:30)
Python - Logistic Regression for Common Support Region (4:20)
Python - Visualizing Common Support Region (7:19)
Python - Matching (6:29)
Matching Robustness Check (1:55)
Python - Repeated Experiment (8:31)
Python - Removing 1 Confounder (2:34)
My Experience with Matching (2:41)
PART C: DATA VISUALIZATION
What Is Data Visualization And Why It Is Important?
Section 7 - Distribution Charts and Plotting Basics
Game Plan for Distribution Charts (2:44)
Histogram (2:57)
CASE STUDY: Pokemon Master (Briefing) (1:46)
Python: Libraries and Data (4:10)
Python: Defining Chart Size (2:41)
Python: Basic Histogram (3:17)
Python: Customizing Histogram (4:16)
Python: Adding Vertical Lines (3:31)
Python: Adding Horizontal Lines (3:33)
Box Plot (4:14)
Python: Basic Box Plot (2:33)
Python: Customizing Box Plot (5:08)
Python: Swarmplot (1:38)
Violin Plot (3:23)
Python: Violin Plot (6:20)
Ridgeline (3:06)
Python: Prepare Data for Ridgeline (8:05)
Python: Prepare Chart for Ridgeline (12:04)
Python: Customize Layout (5:07)
Python: HTML Export and Building a Cheat Sheet (5:15)
Colours (7:47)
What Did You Learn In This Section? (3:18)
Section 8 - Ranking Charts
Game Plan for Ranking Charts (2:58)
Bar Charts (3:41)
CASE STUDY: World Happiness (Briefing) (2:24)
Python: Libraries and Data (3:40)
Python: Horizontal Bar Chart (5:16)
Python: Customizing Bar Chart (5:28)
Python: Vertical Bar Chart (3:59)
Python: Highlight a Bar (2:19)
Lollipop (4:45)
Python: Lollipop Chart (4:04)
Python: Customizing a Lollipop Chart (3:11)
Spider Chart (3:43)
Python: Spider Chart Preparation (9:15)
Python: Basic Spider Chart (5:56)
Python: Customizing Spider Chart (10:51)
"The Visual Display of Quantitative Information" by Edward R. Tufte (3:10)
What Did You Learn In This Section? (2:38)
PART D: SEGMENTATION
What is Segmentation and why is it important?
Section 9 - RFM (Recency, Frequency, Monetary) Analysis
Game Plan for RFM (0:45)
Value Based Segmentation (2:52)
RFM Model (4:53)
CASE STUDY: Online Shopping (Briefing) (0:53)
Python: Directory and Libraries (2:17)
Python: Loading Data (2:29)
Python: Creating Sales Variable (1:45)
Python: Date Variable (3:33)
Python: Customer Level Aggregation (3:49)
Python: Monetary Variable (1:23)
Python: Tidying up Dataframe (2:52)
Python: Quartiles (6:34)
Python: RFM Score (1:51)
Python: RFM Function (4:41)
Python: Applying RFM Function (2:09)
Python: Results Summary (4:29)
CHALLENGE: Introduction (3:31)
CHALLENGE: Solutions (12:16)
Section 10 - Gaussian Mixture
Game Plan for Gaussian Mixture (1:10)
Clustering (2:09)
Gaussian Mixture Model (3:57)
CASE STUDY: Credit Cards #1 (Briefing) (0:53)
Python: Directory and Data (2:11)
Python: Load Data (1:50)
Python: Transform Character Variables (1:21)
AIC and BIC (2:15)
Python: Optimal Number of Clusters (6:24)
Python: Gaussian Mixture Model (1:11)
Python: Cluster Prediction and Assignment (2:50)
Python: Interpretation (7:46)
CHALLENGE: Introduction (4:35)
CHALLENGE: Solutions (18:04)
My Experience with Segmentation (3:15)
PART E: PREDICTIVE ANALYTICS
What are Predictive Analytics and why are they important?
Section 11 - Random Forest
Game Plan for Random Forest (1:05)
Ensemble Learning and Random Forest (2:16)
How Decision Trees Work (4:19)
CASE STUDY: Credit Cards #2 (Briefing) (0:37)
Python: Directory and Libraries (2:02)
Python: Loading Data (1:50)
Python: Transform Object into Numerical Variables (1:43)
Python: Summary Statistics (2:21)
Random Forest Quirks (2:30)
Python: Isolate X and Y (1:32)
Python: Training and Test Set (3:40)
Python: Random Forest Model (2:59)
Python: Predictions (1:18)
Python: Classification Report and F1 score (3:44)
Python: Feature Importance (4:22)
Parameter Tuning (2:45)
Python: Parameter Grid (3:14)
Python: Parameter Tuning (7:10)
CHALLENGE: Introduction (4:24)
CHALLENGE: Solutions (Part 1) (8:29)
CHALLENGE: Solutions (Part 2) (9:40)
Section 12 - (Facebook) Prophet
(Facebook) Prophet - Game Plan (1:41)
Structural Time Series (2:37)
(Facebook) Prophet (3:39)
CASE STUDY: Wikipedia (Briefing) (0:59)
Python: Directory and Libraries (2:47)
Python: Loading and Inspecting the Data (4:50)
Python: Formatting the Date Variable (3:15)
Python: Renaming Variables (1:32)
Dynamic Holidays (2:26)
Python: Easter Holiday (4:35)
Python: Black Friday Holidays (4:53)
Python: Finishing Holiday Preparation (1:14)
Training and Test Set in Time Series (1:55)
Python: Training and Test Set (2:03)
(Facebook) Prophet Model (2:24)
Additive vs. Multiplicative Seasonality (2:19)
Python: (Facebook) Prophet Model (5:52)
Python: Regressor Coefficients (3:06)
Python: Forecasting (6:44)
Python: Event Assessment (6:48)
Python: Accuracy Assessment (4:36)
Python: Visualization (5:51)
Cross-validation (1:15)
Python: Cross-validation (6:02)
Python: Cross-validation Results and Visualization (5:49)
Parameters to Tune (1:54)
Python: Parameter Grid (4:48)
Python: Parameter Tuning (7:00)
Python: Parameter Tuning Results (3:19)
CHALLENGE: Introduction - Demand in NYC (2:02)
CHALLENGE: Solutions (Part 1) (10:44)
CHALLENGE: Solutions (Part 2) (15:27)
CHALLENGE: Solutions (Part 3) (16:03)
Forecasting at Uber (4:38)
Part F - Advanced Analytics
What is Advanced Analytics and why it is so important?
Section 13 - Multivariate A/B Testing
Game Plan for Multivariate A/B Testing (1:47)
CASE STUDY: Google's Homepage Experiment (Briefing) (0:59)
Python: Libraries and Data (3:37)
Python: EDA (5:47)
Multivariate A/B Testing (MVT) (4:00)
Python: Full Factorial Setup (4:16)
Python: Full Factorial Testing (9:29)
Partial Factorial Deep Dive (3:57)
Python: Partial Factoral Combinations (4:57)
Python: ANOVA and Tukey's HSD Test (3:48)
Python: Encoding Variables and Generate Combinations (8:53)
Python: Regression Analysis Setup (2:27)
Python: Regression Analysis (9:54)
Python: Random Forest Model (3:29)
Python: Random Forest Evaluation (3:22)
Random Forest Parameter Tuning (2:25)
Python: Parameter Tuning (8:55)
Python: Parameter Tuning Best Model (4:09)
Python: Inferring Untested Variants - Predicting (10:40)
Python: Inferring Untested Variants - Comparing (13:43)
Python: Inferring Untested Variants - Visualizing (7:06)
What Did You Learn in This Section? (2:54)
CASE STUDY: Coca Cola "Share a Coke" Campaign (5:06)
Where To Go From Here?
Thank You! (1:17)
Review This Course!
Become An Alumni
Learning Guideline
ZTM Events Every Month
LinkedIn Endorsements
Ensemble Learning and Random Forest
This lecture is available exclusively for ZTM Academy members.
If you're already a member,
you'll need to login
.
Join ZTM To Unlock All Lectures