Course Curriculum
Available in
days
days
after you enroll
Available in
days
days
after you enroll
- What Is Machine Learning? (6:52)
- AI/Machine Learning/Data Science (4:51)
- Exercise: Machine Learning Playground (6:16)
- How Did We Get Here? (6:03)
- Exercise: YouTube Recommendation Engine (4:24)
- Types of Machine Learning (4:41)
- Are You Getting It Yet?
- What Is Machine Learning? Round 2 (4:44)
- Section Review (1:48)
- Let's Have Some Fun (+ Free Resources)
Available in
days
days
after you enroll
- Section Overview (3:08)
- Introducing Our Framework (2:38)
- 6 Step Machine Learning Framework (4:59)
- Types of Machine Learning Problems (10:32)
- Types of Data (4:50)
- Types of Evaluation (3:31)
- Features In Data (5:22)
- Modelling - Splitting Data (5:58)
- Modelling - Picking the Model (4:35)
- Modelling - Tuning (3:17)
- Modelling - Comparison (9:32)
- Overfitting and Underfitting Definitions
- Experimentation (3:35)
- Tools We Will Use (3:59)
- Optional: Elements of AI
- Unlimited Updates
Available in
days
days
after you enroll
Available in
days
days
after you enroll
- Section Overview (1:09)
- Introducing Our Tools (3:28)
- What is Conda? (2:35)
- Conda Environments (4:30)
- Mac Environment Setup (17:26)
- Mac Environment Setup 2 (14:11)
- Windows Environment Setup (5:17)
- Windows Environment Setup 2 (23:17)
- Linux Environment Setup
- Sharing your Conda Environment
- Jupyter Notebook Walkthrough (10:20)
- Jupyter Notebook Walkthrough 2 (16:17)
- Jupyter Notebook Walkthrough 3 (8:10)
- Course Check-In
Available in
days
days
after you enroll
- Section Overview (2:27)
- Downloading Workbooks and Assignments
- Pandas Introduction (4:29)
- Series, Data Frames and CSVs (13:21)
- Data from URLs
- Quick Note: Upcoming Videos
- Describing Data with Pandas (9:48)
- Selecting and Viewing Data with Pandas (11:08)
- Quick Note: Upcoming Video
- Selecting and Viewing Data with Pandas Part 2 (13:07)
- Manipulating Data (13:56)
- Manipulating Data 2 (9:57)
- Manipulating Data 3 (10:12)
- Assignment: Pandas Practice
- How To Download The Course Assignments (7:43)
- Implement a New Life System
Available in
days
days
after you enroll
- Section Overview (2:40)
- NumPy Introduction (5:17)
- Quick Note: Correction In Next Video
- NumPy DataTypes and Attributes (14:05)
- Creating NumPy Arrays (9:22)
- NumPy Random Seed (7:17)
- Endorsements On LinkedIn
- Viewing Arrays and Matrices (9:35)
- Manipulating Arrays (11:31)
- Manipulating Arrays 2 (9:44)
- Standard Deviation and Variance (7:10)
- Reshape and Transpose (7:26)
- Dot Product vs Element Wise (11:45)
- Exercise: Nut Butter Store Sales (13:04)
- Comparison Operators (3:33)
- Sorting Arrays (6:19)
- Turn Images Into NumPy Arrays (7:37)
- Assignment: NumPy Practice
- Optional: Extra NumPy resources
Available in
days
days
after you enroll
- Section Overview (1:50)
- Matplotlib Introduction (5:16)
- Importing And Using Matplotlib (11:36)
- Anatomy Of A Matplotlib Figure (9:19)
- Scatter Plot And Bar Plot (10:09)
- Histograms And Subplots (8:40)
- Subplots Option 2 (4:15)
- Quick Tip: Data Visualizations (1:48)
- Plotting From Pandas DataFrames (5:58)
- Quick Note: Regular Expressions
- Plotting From Pandas DataFrames 2 (10:33)
- Plotting from Pandas DataFrames 3 (8:32)
- Plotting from Pandas DataFrames 4 (6:36)
- Plotting from Pandas DataFrames 5 (8:28)
- Plotting from Pandas DataFrames 6 (8:27)
- Plotting from Pandas DataFrames 7 (11:20)
- Customizing Your Plots (10:09)
- Customizing Your Plots 2 (9:41)
- Saving And Sharing Your Plots (4:14)
- Assignment: Matplotlib Practice
Available in
days
days
after you enroll
- Section Overview (2:29)
- Scikit-learn Introduction (6:41)
- Quick Note: Upcoming Video
- Refresher: What Is Machine Learning? (5:40)
- Quick Note: Upcoming Videos
- Scikit-learn Cheatsheet (6:12)
- Typical scikit-learn Workflow (23:14)
- Optional: Debugging Warnings In Jupyter (18:57)
- Getting Your Data Ready: Splitting Your Data (8:37)
- Quick Tip: Clean, Transform, Reduce (5:03)
- Getting Your Data Ready: Convert Data To Numbers (16:54)
- Note: Update to next video (OneHotEncoder can handle NaN/None values)
- Getting Your Data Ready: Handling Missing Values With Pandas (12:22)
- Extension: Feature Scaling
- Note: Correction in the upcoming video
- Getting Your Data Ready: Handling Missing Values With Scikit-learn (17:29)
- NEW: Choosing The Right Model For Your Data (20:14)
- NEW: Choosing The Right Model For Your Data 2 (Regression) (11:21)
- Quick Note: Decision Trees
- Quick Tip: How ML Algorithms Work (1:25)
- Choosing The Right Model For Your Data 3 (Classification) (12:45)
- Fitting A Model To The Data (6:45)
- Making Predictions With Our Model (8:24)
- predict() vs predict_proba() (8:33)
- NEW: Making Predictions With Our Model (Regression) (8:48)
- NEW: Evaluating A Machine Learning Model (Score) Part 1 (9:41)
- NEW: Evaluating A Machine Learning Model (Score) Part 2 (6:47)
- Evaluating A Machine Learning Model 2 (Cross Validation) (13:16)
- Evaluating A Classification Model 1 (Accuracy) (4:46)
- Evaluating A Classification Model 2 (ROC Curve) (9:04)
- Evaluating A Classification Model 3 (ROC Curve) (7:44)
- Reading Extension: ROC Curve + AUC
- Evaluating A Classification Model 4 (Confusion Matrix) (11:01)
- NEW: Evaluating A Classification Model 5 (Confusion Matrix) (14:22)
- Evaluating A Classification Model 6 (Classification Report) (10:16)
- NEW: Evaluating A Regression Model 1 (R2 Score) (9:59)
- NEW: Evaluating A Regression Model 2 (MAE) (7:22)
- NEW: Evaluating A Regression Model 3 (MSE) (9:49)
- Machine Learning Model Evaluation
- NEW: Evaluating A Model With Cross Validation and Scoring Parameter (25:19)
- NEW: Evaluating A Model With Scikit-learn Functions (14:02)
- Improving A Machine Learning Model (11:16)
- Tuning Hyperparameters (23:15)
- Tuning Hyperparameters 2 (14:23)
- Tuning Hyperparameters 3 (14:59)
- Note: Metric Comparison Improvement
- Quick Tip: Correlation Analysis (2:28)
- Saving And Loading A Model (7:28)
- Saving And Loading A Model 2 (6:20)
- Putting It All Together (20:19)
- Putting It All Together 2 (11:34)
- Scikit-Learn Practice
Available in
days
days
after you enroll
Available in
days
days
after you enroll
- Section Overview (2:09)
- Project Overview (6:09)
- Project Environment Setup (10:58)
- Step 1~4 Framework Setup (12:06)
- Note: Code update for next video
- Getting Our Tools Ready (9:04)
- Exploring Our Data (8:33)
- Finding Patterns (10:02)
- Finding Patterns 2 (16:47)
- Finding Patterns 3 (13:36)
- Preparing Our Data For Machine Learning (8:51)
- Choosing The Right Models (10:15)
- Experimenting With Machine Learning Models (6:31)
- Tuning/Improving Our Model (13:49)
- Tuning Hyperparameters (11:27)
- Tuning Hyperparameters 2 (11:49)
- Tuning Hyperparameters 3 (7:06)
- Quick Note: Confusion Matrix Labels
- Evaluating Our Model (10:59)
- Evaluating Our Model 2 (5:55)
- Evaluating Our Model 3 (8:49)
- Finding The Most Important Features (16:07)
- Reviewing The Project (9:13)
- Exercise: Imposter Syndrome (2:55)
Available in
days
days
after you enroll
- Section Overview (1:07)
- Project Overview (4:24)
- Downloading the data for the next two projects
- Project Environment Setup (10:52)
- Step 1~4 Framework Setup (8:36)
- Exploring Our Data (14:16)
- Exploring Our Data 2 (6:16)
- Feature Engineering (15:24)
- Turning Data Into Numbers (15:38)
- Filling Missing Numerical Values (12:49)
- Filling Missing Categorical Values (8:27)
- Fitting A Machine Learning Model (7:16)
- Splitting Data (10:00)
- Challenge: What's wrong with splitting data after filling it?
- Custom Evaluation Function (11:13)
- Reducing Data (10:36)
- RandomizedSearchCV (9:32)
- Improving Hyperparameters (8:11)
- Preproccessing Our Data (13:15)
- Making Predictions (9:17)
- Feature Importance (13:50)
Available in
days
days
after you enroll
- Data Engineering Introduction (3:23)
- What Is Data? (6:42)
- What is a Data Engineer? (4:20)
- What is A Data Engineer 2? (5:36)
- What is a Data Engineer 3? (5:03)
- What is a Data Engineer 4? (3:22)
- Types of Databases (6:50)
- Quick Note: Upcoming Video
- Optional: OLTP Databases (10:54)
- Optional: Learn SQL
- Hadoop, HDFS and MapReduce (4:22)
- Apache Spark and Apache Flink (2:07)
- Kafka and Stream Processing (4:33)
Available in
days
days
after you enroll
- Section Overview (2:06)
- Deep Learning and Unstructured Data (13:36)
- Setting Up With Google
- Setting Up Google Colab (7:17)
- Google Colab Workspace (4:23)
- Uploading Project Data (6:52)
- Setting Up Our Data (4:40)
- Setting Up Our Data 2 (1:32)
- Importing TensorFlow 2 (12:43)
- Optional: TensorFlow 2.0 Default Issue (3:38)
- Using A GPU (8:59)
- Optional: GPU and Google Colab (4:27)
- Optional: Reloading Colab Notebook (6:49)
- Loading Our Data Labels (12:04)
- Preparing The Images (12:32)
- Turning Data Labels Into Numbers (12:11)
- Creating Our Own Validation Set (9:18)
- Preprocess Images (10:25)
- Preprocess Images 2 (11:00)
- Turning Data Into Batches (9:37)
- Turning Data Into Batches 2 (17:54)
- Visualizing Our Data (12:41)
- Preparing Our Inputs and Outputs (6:37)
- Optional: How machines learn and what's going on behind the scenes?
- Building A Deep Learning Model (11:42)
- Building A Deep Learning Model 2 (10:53)
- Building A Deep Learning Model 3 (9:05)
- Building A Deep Learning Model 4 (9:12)
- Summarizing Our Model (4:52)
- Evaluating Our Model (9:26)
- Preventing Overfitting (4:20)
- Training Your Deep Neural Network (19:09)
- Evaluating Performance With TensorBoard (7:30)
- Make And Transform Predictions (15:04)
- Transform Predictions To Text (15:19)
- Visualizing Model Predictions (14:46)
- Visualizing And Evaluate Model Predictions 2 (15:52)
- Visualizing And Evaluate Model Predictions 3 (10:39)
- Saving And Loading A Trained Model (13:34)
- Training Model On Full Dataset (15:01)
- Making Predictions On Test Images (16:54)
- Submitting Model to Kaggle (14:14)
- Making Predictions On Our Images (15:15)
- Finishing Dog Vision: Where to next?
Available in
days
days
after you enroll
Available in
days
days
after you enroll
Available in
days
days
after you enroll
Available in
days
days
after you enroll
- Watch Python Basics 2 Section
- Pure Functions (9:23)
- map() (6:30)
- filter() (4:23)
- zip() (3:28)
- reduce() (7:31)
- List Comprehensions (8:37)
- Set Comprehensions (6:26)
- Exercise: Comprehensions (4:36)
- Modules in Python (10:54)
- Quick Note: Upcoming Videos
- Optional: PyCharm (8:19)
- Packages in Python (10:45)
- Different Ways To Import (7:03)
- Next Steps
Available in
days
days
after you enroll
Available in
days
days
after you enroll